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Transient flow of a viscous compressible fluid
in a circular tube after a sudden point
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The flow of a viscous compressible fluid in a circular tube generated by a sudden
impulse at a point on the axis and directed transverse to the axis is studied on
the basis of the linearized Navier–Stokes equations. A no-slip boundary condition
is assumed to hold on the wall of the tube. The flow behaviour differs qualitatively
from that for a point impulse in the direction of the axis in that there is no coupling
to a diffusive sound mode. As a consequence, the transverse velocity autocorrelation
function of a suspended Brownian particle decays at long times faster than t−3/2.

1. Introduction
In a previous paper (Felderhof 2009), we have studied the flow dynamics of a

viscous compressible fluid in a circular tube after a sudden impulse at a point on the
axis and directed along the axis. It was shown that compressibility has a strong effect
on the flow in confined geometry. In particular, the flow velocity at the source point
shows an algebraic t−3/2 long-time tail with amplitude proportional to the square root
of the compressibility. The effect was demonstrated in computer simulation by Hagen
et al. (1997). It was shown by Pagonabarraga et al. (1999) that the long-time tail is
due to the coupling to diffusive sound modes of long wavelength.

In the following, we study the dynamics of flow in a circular tube generated by
a sudden point impulse on the axis of the tube and directed transverse to the axis.
The analysis is based on the solution of the linearized Navier–Stokes equations for
a compressible viscous fluid. The explicit form of the corresponding Green function
is found as an integral over wavenumber and frequency. The time dependence of the
flow is again strongly affected by compressibility, but in the present geometry the
velocity does not show a t−3/2 long-time tail.

In the limit of zero frequency, compressibility plays no role. Therefore, the integral
of the Green function over all time is identical to the steady-state Green function
studied by Hasimoto (1976) and Liron & Shahar (1978) for an incompressible fluid.
Because of the choice of source point on the axis, the present solution takes a
simpler form than the one for general choice of source point studied by these authors.
For transverse excitation the steady-state pressure disturbance decays rapidly with
distance along the tube axis, in contrast to the case of parallel excitation, where there
is a non-vanishing pressure drop between both ends of the tube.
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The velocity autocorrelation function of a suspended Brownian particle, initially
located on the axis, may be obtained from the present calculation in the approximation
where the particle size is neglected. The calculation shows that the correlation function
of the transverse velocity after a short time changes sign and tends to zero with a
rapidly decaying negative long-time tail. This result differs qualitatively from that for
plane plate geometry found in lattice Boltzmann computer simulation by Frydel &
Rice (2006, 2007). These authors found a positive decay with superposed oscillations
at long times because of sound bouncing from the plates, both for no-slip and perfect
slip boundary conditions at the plates. The different behaviour must be due to the
difference in geometry.

2. Linear hydrodynamics of flow in a circular tube
We consider a viscous compressible fluid of shear viscosity η, bulk viscosity ηv

and equilibrium mass density ρ0 located in a circular tube of radius b. We choose
coordinates such that the z axis is along the axis of the tube and use cylindrical
coordinates (R, ϕ, z). For time t < 0, the fluid is at rest at the static pressure ps . At
time t = 0, an impulse P is imparted to the fluid at the origin and directed along the
x axis. We study the resulting motion of the fluid for time t > 0.

For small-amplitude motion, the flow velocity v(r, t) and the pressure p(r, t) are
governed by the linearized Navier–Stokes equations

ρ0

∂v

∂t
= η∇2v +

(
1

3
η + ηv

)
∇∇ · v − ∇p + Pδ(r)δ(t),

∂p

∂t
= −ρ0c

2
0∇ · v,

⎫⎪⎬
⎪⎭ (2.1)

with impulse P = P ex and long-wave sound velocity c0. We assume that the flow
velocity satisfies the no-slip boundary condition at the wall of the cylinder, i.e. v = 0
at R = b. We look for the solution of (2.1) for which the flow velocity v(r, t) vanishes
and the pressure tends to the static pressure ps as z → ±∞ at any time t .

After Fourier analysis in time, we find that the equations for the Fourier components

vω(r) =

∫ ∞

0

eiωtv(r, t) dt, pω(r) =

∫ ∞

0

eiωt [p(r, t) − ps] dt (2.2)

are

η
(
∇2vω − α2vω

)
+

(
1

3
η + ηv

)
∇∇ · vω − ∇pω = −Pδ(r),

∇ · vω − iβpω = 0,

⎫⎬
⎭ (2.3)

where we have used the abbreviations

α =

√
−iωρ0

η
, Re α > 0, β =

ω

ρ0c
2
0

. (2.4)

We write the Fourier-transformed flow velocity as

vω(r) = v0ω(r) + v1ω(r), (2.5)

where v0ω(r) is the solution for infinite space and v1ω(r) is the reflected flow because
of the presence of the boundary. The flows can be expressed as

v0ω(r) = G0(r − r0) · P, vω(r) = G(r, r0) · P, (2.6)
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with Green functions G0 and G. The Green function for infinite space is translationally
invariant and given explicitly by (Jones 1981)

G0(r) =
1

4πη

(
e−αr

r
1 + α−2∇∇eiμr − e−αr

r

)
, (2.7)

with the abbreviation

μ = ω/c, Imμ > 0, (2.8)

where

c = c0

[
1 − iβ

(
4

3
η + ηv

)]1/2

. (2.9)

It is convenient to use complex notation and consider the initial impulse P =
P (ex + iey). Then the flow velocity v0ω for infinite space can be expressed as

v0Rω(r) =
P

2π2ηα2
eiϕ

∫ ∞

0

v̂0R(k, ω, R) cos kz dk,

v0ϕω(r) =
P

2π2ηα2
eiϕ

∫ ∞

0

v̂0ϕ(k, ω, R) cos kz dk,

v0zω(r) =
P

2π2ηα2
eiϕ

∫ ∞

0

v̂0z(k, ω, R) sin kz dk,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

with amplitudes

v̂0R(k, ω, R) = −k2K0(sR) − s

R
K1(sR) + u2K0(uR) +

u

R
K1(uR),

v̂0ϕ(k, ω, R) = iα2K0(sR) + i
s

R
K1(sR) − i

u

R
K1(uR),

v̂0z(k, ω, R) = −ksK1(sR) + kuK1(uR),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.11)

with modified Bessel functions Kn(x) and the abbreviations

s =
√

k2 + α2, u =
√

k2 − μ2. (2.12)

The above expressions are derived by differentiation of the fundamental identity

2

π

∫ ∞

0

K0(
√

k2 + α2R) cos kz dk =
e−αr

r
. (2.13)

The latter follows from the fact that both right- and left-hand sides satisfy the
Helmholtz equation for r > 0 and have the same singularity at r = 0 (see also
Gradshteyn & Ryzhik 1965, expressions 6.726.4 and 8.469.3).

In analogy with (2.10) we write the reflected flow velocity v1ω as

v1Rω(r) =
P

2π2ηα2
eiϕ

∫ ∞

0

v̂1R(k, ω, R) cos kz dk,

v1ϕω(r) =
P

2π2ηα2
eiϕ

∫ ∞

0

v̂1ϕ(k, ω, R) cos kz dk,

v1zω(r) =
P

2π2ηα2
eiϕ

∫ ∞

0

v̂1z(k, ω, R) sin kz dk,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.14)
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with amplitudes

v̂1R(k, ω, R) = A(k, ω)vRp(k, ω, R) + B(k, ω)vRv(k, ω, R) + C(k, ω)vRs(k, ω, R),

v̂1ϕ(k, ω, R) = A(k, ω)vϕp(k, ω, R) + B(k, ω)vϕv(k, ω, R) + C(k, ω)vϕs(k, ω, R),

v̂1z(k, ω, R) = A(k, ω)vzp(k, ω, R) + B(k, ω)vzv(k, ω, R) + C(k, ω)vzs(k, ω, R),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(2.15)

where

vRp(k, ω, R) = −u2I0(uR) +
u

R
I1(uR), vϕp(k, ω, R) = −i

u

R
I1(uR),

vzp(k, ω, R) = kuI1(uR), vRv(k, ω, R) = −k2I0(sR) +
s

R
I1(sR),

vϕv(k, ω, R) = iα2I0(sR) − i
s

R
I1(sR), vzv(k, ωR) = ksI1(sR),

vRs(k, ω, R) =
1

R
I1(sR), vϕs(k, ω, R) = isI0(sR) − i

R
I1(sR),

vzs(k, ωR) = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.16)

with modified Bessel functions In(x). Together with the expression for the pressure
given in (2.22), the expressions in (2.14) provide the general solution to (2.3) which is
regular everywhere, except infinity, and is symmetric in z. This must be combined with
the singular solution given by (2.10), (2.11) and (2.21). From the no-slip boundary
condition at R = b, we find for the coefficients A(k, ω), B(k, ω) and C(k, ω):

A(k, ω) =
P (k, ω)

Z(k, ω)
, B(k, ω) =

Q(k, ω)

Z(k, ω)
, C(k, ω) =

S(k, ω)

Z(k, ω)
(2.17)

with denominator

Z(k, ω) = suI0(ub)I1(sb)2 + k2sbI0(sb)2I1(ub)

+I0(sb)I1(sb)
[
(s2 − 2k2)I1(ub) − s2ubI0(ub)

]
(2.18)

and numerators

P (k, ω) =
1

u
[sI1(sb)2((s2 − 2k2)K0(sb) + u2K0(ub)) + k2sbI0(sb)2(sK1(sb)

− uK1(ub)) + I0(sb)I1(sb)(k2s2bK0(sb) − s2u2bK0(ub)

+ (s2 − 2k2)(sK1(sb) − uK1(ub)))],
Q(k, ω) = − sbI0(sb)[I1(ub)(k2K0(sb) − u2K0(ub))

+ uI0(ub)(sK1(sb) − uK1(ub))] − I1(sb)[I1(ub)((s2 − 2k2)K0(sb)

+ u2K0(ub)) − uI0(ub)(sK1(sb) − uK1(ub))],

S(k, ω) = −α2u[I0(sb) − I0(ub)].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.19)

The Fourier transform of the pressure corresponding to the point excitation in
infinite space takes the form

p0ω(r) =
P

4π

c2
0

c2

Reiϕ

r3
(1 − iμr)eiμr . (2.20)
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This can be cast in the alternative form

p0ω(r) =
P

2π2

c2
0

c2
eiϕ

∫ ∞

0

uK1(uR) cos kz dk. (2.21)

The pressure corresponding to the reflected flow field given by (2.14) is

p1ω(r) =
P

2π2

c2
0

c2
eiϕ

∫ ∞

0

A(k, ω)uI1(uR) cos kz dk. (2.22)

It is evident from (2.3) that in the limit of zero frequency, the equations reduce
to the steady-state Stokes equations for an incompressible fluid. Hence, the integral
over all time of the velocity field v(r, t) and the pressure disturbance p(r, t) − ps

must be identical to the expressions found by Hasimoto (1976) and Liron & Shahar
(1978).

3. Steady-state limit
It is worthwhile to consider separately the steady-state limit of the above

expressions, corresponding to zero frequency. The calculation yields the Green
function for the steady-state Stokes equations for source point at the origin and
no-slip boundary condition at the wall of the cylinder. The Green function for
arbitrary source point has been obtained earlier directly from the Stokes equations
(Hasimoto 1976; Liron & Shahar 1978; Ishii & Hasimoto 1980).

We consider first the Green function for infinite space. From (2.10) and (2.11) we
find at zero frequency

v0R0(r) =
P

4π2η
eiϕ

∫ ∞

0

[
K0(kR) + kRK1(kR)

]
cos kz dk =

P

8πη

R2 + r2

r3
eiϕ,

v0ϕ0(r) =
P

4π2η
ieiϕ

∫ ∞

0

K0(kR) cos kz dk =
P

8πη

ieiϕ

r
,

v0z0(r) =
P

4π2η
eiϕ

∫ ∞

0

kRK0(kR) sin kz dk =
P

8πη

(x + iy)z

r3
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

in agreement with Oseen’s tensor. The corresponding pressure is found from (2.21) as

p00(r) =
P

2π2
eiϕ

∫ ∞

0

kK1(kR) cos kz dk =
P

4π

x + iy

r3
. (3.2)

It is less straightforward to take the zero frequency limit in (2.14). We write the
resulting expressions as

v1R0(r) =
P

2π2η
eiϕ

∫ ∞

0

u1R(k, R) cos kz dk,

v1ϕ0(r) =
P

2π2η
eiϕ

∫ ∞

0

u1ϕ(k, R) cos kz dk,

v1z0(r) =
P

2π2η
eiϕ

∫ ∞

0

u1z(k, R) sin kz dk.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)
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The amplitudes u1R(k, R), u1ϕ(k, R) and u1z(k, R) can be expressed as

u1R(k, R) = A0(k)I0(kR) + A1(k)
bI1(kR)

R
+ A2(k)kRI1(kR),

u1ϕ(k, R) = B0(k)I0(kR) + B1(k)
bI1(kR)

R
,

u1z(k, R) = C0(k)kRI0(kR) + C1(k)I1(kR)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.4)

with coefficients

A0(k) =
P0(kb)

M(kb)
, A1(k) =

P1(kb)

M(kb)
, A2(k) =

P2(kb)

M(kb)
,

B0(k) =
Q0(kb)

M(kb)
, B1(k) =

Q1(kb)

M(kb)
,

C0(k) =
S0(kb)

M(kb)
, C1(k) =

S1(kb)

M(kb)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.5)

with denominator

M(q) = 2[q2I0(q)3 − qI0(q)2I1(q) − (2 + q2)I0(q)I1(q)2 + qI1(q)3] (3.6)

and numerators

P0(q) = qI0(q)I1(q)K0(q) − q2I0(q)2K0(q) + (2 + q2)I1(q)2K0(q)

+ qI1(q)2K1(q) − q2I0(q), P1(q) = qI0(q) + I1(q),

P2(q) = −P0(q) − q2I0(q) + qI1(q),

Q0(q) = iP0(q) + iqP1(q), Q1(q) = −iP1(q),

S0(q) = −P2(q), S1(q) = q2I0(q) − qI1(q).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

Although the expressions are complicated, they are much simpler than those of
Ishii & Hasimoto (1980) and Liron & Shahar (1978), when the latter are specialized
to source point on the axis. The relation of the function M(q) to the function D1(q)
of Liron & Shahar is M(q) = qD1(q).

From (2.22), we find for the steady state pressure

p10(r) =
P

π2
eiϕ

∫ ∞

0

A2(k)kI1(kR) cos kz dk. (3.8)

In figure 1, we show the behaviour of the normalized steady-state pressure disturbance
4πp0(r)/P for x = 0.5b, y = 0 and impulse P = P ex as a function of z. The decay
with z is faster than the behaviour in infinite space given by (3.2). One can check that
the flow field (v0(r), p0(r)) satisfies the steady-state Stokes equations and the no-slip
boundary condition.

4. Time-dependent flow
The explicit expressions found above allow the calculation of velocity and pressure

at any point r in the tube and at any time t by numerical inversion of the Fourier
transform with respect to frequency. The pressure may be written as

p(r, t) = ps + δp(r, t), (4.1)



Transient flow of a viscous compressible fluid 335
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4π
p 0
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Figure 1. Plot of the reduced steady state pressure 4πp0/P at x = 0.5b, y = 0 as a function
of z (solid curve). The dashed curve shows the corresponding pressure in infinite space.

where the time dependence of the disturbance δp follows by inverse transform of
the expressions in (2.20) and (2.22). In the incompressible limit, a non-vanishing
pressure perturbation is established everywhere instantaneously due to the infinite
velocity of sound. For a compressible fluid the pressure at any point different from
the origin initially equals the static pressure ps . At later times, a pressure pulse passes
through the point. We have found that for the initial impulse parallel to the axis the
confinement in the tube causes a slow decay of the pressure disturbance with a t−3/2

power law at long times (Felderhof 2009). If the initial impulse is perpendicular to
the axis, the decay of pressure is much faster.

For parallel excitation the t−3/2 power-law decay of the pressure is caused by
coupling to diffusive sound waves. For transverse excitation, there is no such coupling.
The function Z(k, ω) in (2.18) does not have a zero on the negative imaginary ω-axis
for small k, unlike the case of parallel excitation.

We consider a compressible fluid with parameters chosen as in the computer
simulation of Hagen et al. (1997). In their units the mass density ρ0 is 24, the shear
viscosity η is 14.4 and the sound velocity c0 is 1/

√
2. The bulk viscosity ηv = 1/30

(Frenkel & Lowe 2005 private communication). In figure 2, we show the normalized
pressure disturbance 4πδp/P at the chosen point x = 0.5b, y = 0, z = 0.5b for a
tube of radius b = 1 as a function of time for initial impulse in the x-direction. We
compare with the normalized pressure perturbation 4πp1/P . It is evident that at long
time the pressure disturbance δp is dominated by p1. We find numerically that the
pressure perturbation p1(r, t) at the fixed point decays at long times at least as fast
as with a t−15/2 power law. A power-law form of the decay is not assured.

In conclusion, we study the velocity autocorrelation function of a Brownian
particle of radius a and mass mp , initially located at the origin. We consider only
the components of the motion transverse to the axis of the tube. The velocity
autocorrelation function may be evaluated as the Fourier transform of the transverse
components of the frequency-dependent admittance tensor, which gives the mean
velocity response of the particle to an applied harmonic force. The admittance tensor
differs from that for infinite space because of the no-slip boundary condition at the
wall. For a � b, the difference may be expressed in terms of a reaction field tensor.
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t

0

0.2

0.4

0.6

0.8

1.0

4π
δp

/P

Figure 2. Plot of the normalized pressure disturbance 4πδp/P at the point x = 0.5b,
y = 0, z = 0.5b in a tube of radius b = 1 in a compressible fluid with properties as in
the computer simulation of Hagen et al. (1997) as a function of time (solid curve). The dashed
curve shows the contribution of the reflected wave 4πp1/P .

Here we need the complex transverse component given by

F11(0, ω) = v1ω1(0)/P. (4.2)

The relevant element of the admittance tensor is (Felderhof 2005)

Y11(0, ω) = Y0(ω)
[
1 + A(ω)C(ω)F11(0, ω)

]
, (4.3)

where Y0(ω) is the scalar admittance for infinite space. The expressions for Y0(ω)
and the coefficients A(ω) and C(ω) have been given elsewhere (Felderhof 2009).

The zero-frequency admittance is the particle mobility. The xx-component of the
mobility tensor is

μxx(0) =
1

6πηa

(
1 − k0

a

b

)
. (4.4)

From (3.3) we find that the dimensionless coefficient k0 is

k0 = − 3

π
b

∫ ∞

0

[
A0(k) +

1

2
kbA1(k)

]
dk (4.5)

with numerical value k0 = 1.80436, in agreement with Hasimoto’s result (Hasimoto
1976). As noted by Hasimoto, it is interesting that the value is less than the value
2.10444 for parallel excitation. This is contrary to what one would expect from the
behaviour near a plane wall, as calculated by Lorentz (1907). For a plane wall the
coefficient is 9/8 for transverse excitation and 9/16 for parallel excitation (Happel &
Brenner 1973).

In the theory of Brownian motion, the velocity autocorrelation function of the
particle is defined by

Cxx(t) = 〈Ux(t)Ux(0)〉, (4.6)

where the angle brackets denote the equilibrium ensemble average. By axial symmetry
the correlation function Cyy(t) takes the same value, and the cross-correlation Cxy(t)
vanishes. According to the fluctuation–dissipation theorem the Fourier transform of
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Figure 3. Plot of ψx(t)/ψ̂x(0) as a function of τ for the same fluid as in figure 2.

Cxx(t) is given by

Ĉxx(ω) =

∫ ∞

0

eiωtCxx(t) dt = kBT Yxx(0, ω). (4.7)

The reaction factor Fxx(0, ω) may be regarded as the Fourier transform of a function
ψx(t) according to

Fxx(0, ω) =
1

6πρ0

∫ ∞

0

eiωtψx(t) dt. (4.8)

The function ψx(t) starts at zero, because the sound wave needs a finite time to be
reflected from the wall of the tube. An asymptotic calculation of the integrands in
(3.3) shows that as a consequence of the behaviour of the integrands for small k, the
function ψx(t) decays with a t−3/2 long-time tail as

ψx(t) ≈ − 1

2
√

πb3
τ−3/2 as t → ∞, (4.9)

where τ = t/τb with τb = b2/ν. In figure 3, we plot the ratio ψx(t)/ψ̂x(0), where
ψ̂x(0) = −k0/(bν), as a function of τ . In figure 4, we plot the same function on a
doubly logarithmic scale.

The product A(ω)C(ω) in (4.3) has the low-frequency expansion

A(ω)C(ω) = 6πηa(1 + αa) + O(ω). (4.10)

Combining results, we find for the low-frequency expansion of the admittance

Yxx(0, ω) =
1

6πηa

(
1 − k0

a

b

)
+ O(ω) (4.11)

with coefficient k0 given by (4.5). The term linear in α cancels, and this implies
that the correlation function decays faster than t−3/2 at long times. In figure 5, we
plot the normalized velocity autocorrelation function Cxx(t)/Cxx(0), calculated from
(4.7), as a function of τ for a neutrally buoyant particle of radius a = 5b/9 in the
same fluid as before. The minimum is about twice as deep as for the longitudinal
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Figure 4. Plot of log10[ψx(t)/ψ̂x(0)] as a function of log10 τ for the same fluid as in figure 2
(solid curve). We compare with the straight line corresponding to the long-time tail given by
(4.9) (dashed line).
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Figure 5. Plot of the normalized velocity autocorrelation function Cxx(t)/Cxx(0) as a function
of τ for a neutrally buoyant particle of radius a = 5b/9 centred on average at the origin in
the same fluid as in figure 2.

correlation function. For this case the longitudinal correlation function was studied
in the computer simulation by Hagen et al. (1997) and Pagonabarraga et al. (1999).
In figure 6, we plot the corresponding function log10 |Cxx(t)/Cxx(0)| as a function of
log10 τ . The correlation function appears to decay at least as fast as with a negative
t−9/2 long-time tail. A power-law form of the decay is not assured. The behaviour
is qualitatively different from that found for plane plate geometry in the lattice
Boltzmann computer simulation by Frydel & Rice (2006, 2007), where the correlation
function was positive with superposed oscillations. For a more compressible fluid in
the same geometry the behaviour is more like that seen here; see figures 6 and 8
of Felderhof (2006) (the function plotted in figure 8 is γzz(t), not γxx(t) as indicated
erroneously in that paper).
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Figure 6. Plot of log10 |Cxx(t)/Cxx(0)| as a function of log10 τ corresponding to figure 5
(solid curve). The straight line corresponds to a t−9/2 power law (dashed line).

5. Discussion
The above calculation completes the calculation of the Green function for the

flow of a compressible viscous fluid confined in a circular tube with the restriction
that the source point is located on the axis of the tube. It turns out that the flow
for transverse excitation differs qualitatively from that for parallel excitation. For
transverse excitation there is no coupling to diffusive sound waves, and the flow
velocity decays at long times fast in comparison with parallel excitation. The time
dependence of both flows is strongly affected by compressibility. The integral over all
time is independent of compressibility and given by the solution of the steady-state
Stokes equations for an incompressible fluid.

Although the restriction of the source point to the axis of the tube is somewhat
special, it has the advantage of significant simplification compared to the general
case. The Green function can be used in interesting applications.
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